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Water protection zone for the capital area

• Heiðmörk is the primary 
water protection area for 
the capital area – in all 
250 km2

• Supplies six municipalities 
and 64% of the population 
of Iceland with drinking 
water

• Porous basaltic lava with 
thin volcanic strata and 
limited surface water

• Veitur Utility harness water 
from18 boreholes in 
Heiðmörk some with 
groundwater level close to 
surface (0-10m)



Wildfire and test site for the study

Wildfire 4 May 2021 
• 56,5 hectares of land burned
• Main vegetation pine, lupin and birch

Test site is Veitur Utility with 47 
samples from three zones
• 28 monitoring results before the fire    

(2011-2020) 
• 19 monitoring results after the fire     

(2021-2023)



Monthly rainfall in Reykjavik Oct 2020 Sept 2021
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Average groundwater level in borehole at VK



Results from sampling
• Five PAHs (Polyaromatic Hydrocarbons) detected post-fire and 

one (NAP) was detected up to five months

• Six VOCs (Volatile Organic Compounds) post-fire and three were 
detected up to 18 months

• Six metals were measured in two to nearly six-fold higher post-
fire (Ba, Co, Li, Mo, Mg and Sr) compared to median value 
before. Some short lived except Ba and Sr. 

• Increase more frequent in the low laying area G-J

• Note that parametric value were all well below health limit 



PAHs and VOCs ng/l in drinking water samples after the wildfire
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Barium and Strontium concentration increased significantly  
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Lessons learned for wildfire mitigation – water supply
Working group

 Establish a working group that has the responsibility to incorporate wildfire into
preventive management and produce an emergency response plan in case of a
wildfire.

 The risk management plan should include both improvement to infrastructure and
regular control measures. The response plan should be regularly rehearsed.

 Special precautions should be taken when using large equipment on the water
protection areas during fire or rehearsal, due to risk of oil pollution.

Collaboration and knowledge

 Collaborate with the local fire brigade and other stakeholders such as the local
rescue team, neighbouring water supplies, landowner in the area, and with the
general public.

 Increase knowledge and research of impact from wildfire on water supply, water
quality and the natural environmental.

 Work with the authorities and stakeholders to restrict land use on watershed, e.g. 
forestry and open fire.



Lessons learned for wildfire mitigation – water supply

Improvements of infrastructure
 Replace wooden structure with fire resistant building materials.
 Create a buffer zone around the area.
 Install water faucet and fire claps for firefighting at critical location.
 Clear vegetation around infrastructure and replace soil with gravel.
 Build access roads for firefighting that can also be used as escape roads.
 Invest in suitable equipment and spare parts for preparedness, e.g. electrical equipment.

Regular control measures
 Vegetation management as clear vegetation away from infrastructure and replace soil with 

gravel on regular bases.
 Monitor available hydrometeorological data to use in risk management.
 Regular patrols when warning of wildfire is issued.
 Develop a sampling plan to monitor water quality following a wildfire to register infiltration of

contaminants into groundwater.



Lessons learned for wildfire mitigation – Local Fire Brigade

 Staffing and equipment must be secured for large incidents. 

 Use only water on water catchment areas

 Secure collaboration and dialog between stakeholders. 

 Increase knowledge and increase public awareness of the vulnerability of water sources. 

 Update and rehearse emergency plan in cooperation with stakeholders. 

 Restrict access on protection zones for water supplies as most wildfires are man-made 
e.g., from open fires, grill, or smoking. 

 Ensure access for firefighting and patrolling as part of regional land planning. 

 Survey weather related data and warn the municipalities and the public of the risk. 

 Restrict forestry on the watershed as it is food for fire, especially pine trees, as the pine 
needles contain resin which is fuel for fire. 



Main conclusions

• Aquifers are vulnerable to wildfires and especially porous postglacial 
lava fields 

• Polyaromatic hydrocarbons PAHs and Volatile Organic VOCs 
compounds were detected in groundwater after the fire 

• Concentration of some metals increased, though mostly temporarily
• Important to have long-time emergency preparedness plan in place 

and include wildfire in risk assessment 
• Improve infrastructure with fire-resistant material
• Vegetation maintenance plans to limit growth and provide access to 

the area
• Need of long-time plan to protect groundwater used for drinking 

water 



Impact from climate change on water supplies

• Extreme weather events as 
heavy rain and drought 

• Flooding
• Landslides (earth & 

mudslides)
• Wildfire
• Algae blooms

• Ice and permafrost melting
• Changes in cold climate 

hydrology
• Sea level rise

• Algea blooms
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Study scope and methods 
• 33 water samples across matrices: groundwater (drinking water), 

wastewater effluent, and urban/surface runoff
• Up to 54 PFAS analytes; analyses performed by NMBU (NO) and URI (US) 

laboratories
• Compared concentrations against EU Drinking Water Directive (EU DWD) 

and health-based PFAS-4 (PFHxS, PFOA, PFNA, PFOS) limits (DK, SE)

Regulatory context
• EU DWD: 100 ng/L for Σ20 PFAS
• Health-based PFAS-4 limits: Denmark 2 ng/L; Sweden 4 ng/L
• Stockholm Convention: PFOS, PFOA, PFHxS controlled; ongoing proposals to 

broaden restrictions





Results
Drinking water in Heiðmörk
• Very low PFAS compared to other countries; most compounds below detection 

limits
• ΣPFAS and PFAS-4 far below EU DWD (100 ng/L) and the Danish PFAS-4 health 

limit (2 ng/L)

Wastewater WWT Klettagardar
• Frequent detections with moderate concentrations relative to Nordic/European 

comparators. Median Σ18 PFAS ≈ 9 ng/L 
• Composition includes PFBA, PFHxA, PFPeA; return geothermal water likely 

dilutes concentrations seasonally. 

Surface runoff & AFFF sites
• Residential & light industrial runoff: Σ18 PFAS typically 3–7 ng/L
• Firefighting foam (AFFF) hotspots identified
• Reykjavík Airport (Skeljanes): ΣPFAS is 2,650–3,500 ng/L



Drinking water in Heiðmörk
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Conclusion and recommendation

• Drinking water resource at Heiðmörk is currently well protected and shows 
minimal PFAS.

• Urban runoff and WWTP effluent exhibit low–moderate PFAS levels consistent 
with other Nordic sites.

• AFFF-related hotspots exist; the airport training area is the dominant PFAS 
source observed  and up to 500 time higher than the urban runoff sites

• Recommended to map and prioritize PFAS hotspots nationwide, especially active 
and former fire-training sites near water resources.


